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Abstract. Continuous pharmaceutical manufacturing processes are of increased industrial interest and
require uni- and multivariate Process Analytical Technology (PAT) data from different unit operations to
be aligned and explored within the Quality by Design (QbD) context. Real-time pharmaceutical process
verification is accomplished by monitoring univariate (temperature, pressure, etc.) and multivariate
(spectra, images, etc.) process parameters and quality attributes, to provide an accurate state estimation
of the process, required for advanced control strategies. This paper describes the development and use of
such tools for a continuous hot melt extrusion (HME) process, monitored with generic sensors and a near-
infrared (NIR) spectrometer in real-time, using SIPAT (Siemens platform to collect, display, and extract
process information) and additional components developed as needed. The IT architecture of such a
monitoring procedure based on uni- and multivariate sensor systems and their integration in SIPAT is
shown. SIPATaligned spectra from the extrudate (in the die section) with univariate measurements (screw
speed, barrel temperatures, material pressure, etc.). A multivariate supervisory quality control strategy
was developed for the process to monitor the hot melt extrusion process on the basis of principal
component analysis (PCA) of the NIR spectra. Monitoring the first principal component and the time-
aligned reference feed rate enables the determination of the residence time in real-time.

KEYWORDS: continuous monitoring; near-infrared spectroscopy; principal component analysis; process
analytical technology; SIPAT.

INTRODUCTION

In the new pharmaceutical development paradigm based
on QbD, process understanding requires the identification
and explanation of all critical sources of variability and should
enable an accurate and reliable prediction of product quality
[1–3]. Ideally, it should be based on mechanistic understanding
of formulations and process factors, which in turn comprises
(a) the identification of key parameters and effects, (b) a real-
time and continuous measurement of selected key parameters,
and (c) a control strategy based on the selected uni- and
multivariate real-time measurements [4]. Furthermore, as
many other industries have demonstrated, mechanistic models
are an important key to success.

The Process Analytical Technology toolbox provides the
required link between monitoring and quality control. Moni-
toring is the collection and aggregation of all kind of informa-
tion in real-time with in-line analyzers. Quality control, which
implies the detection of quality relevant deviations, usually
requires the extraction of information from the monitored
data, using statistical tools combined with mechanistic models.
The analysis is thus based on the process knowledge obtained
from previous runs. In this study, unless otherwise stated,
control refers to quality control and not to classical process
control. Moreover, supervisory control means monitoring the
process, detecting deviations from a stable process state and
acting upon possible deviations. The integration and interaction
between several different analyzers, actuators and statistical
models associated to an individual unit operation is referred to
a supervisory control and data acquisition (SCADA) system.

At present, many sensors are available for establishing
simple physicochemical product properties, such as pH, O2

content, and other parameters. For more complex analytical
objectives, multivariate data analysis (MVDA) combined with
spectroscopic techniques, including near infrared (NIR) and
Raman, allows qualitative and quantitative non-invasive pro-
cess monitoring [4,5]. Applying multivariate statistical process
control (MSPC) can be used to reduce process data streams to
a convenient control chart in real-time. Clearly, this calls for
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an IT infrastructure (i.e., SIPAT) that can aggregate real-time
process data from multiple unit operations, raw material data,
PAT data, and equipment status [6].

In this study, the development and integrated use of
SIPAT for monitoring and supervisory control of a continuous
hot melt extrusion (HME) process is presented. In particular,
the required IT architecture for real-time process monitoring
based on uni- and multivariate sensor systems and their inte-
gration in SIPAT is shown. Different aspects related to process
monitoring, data management of diverse types of data and
development of the MSPC strategy are discussed.

HME as a Continuous Pharmaceutical Manufacturing Process

In the last years the interest in continuous manufacturing
has drastically increased, albeit for a wide variety of reasons,
including the smaller scale of operations, eliminating scale-up
related problems, or the fact that by using a small container-
based plant, drugs can be easily manufactured at different loca-
tions, which may be a significant issue for selling drugs in certain
economies (e.g., China). From a chemical engineering point of
view, one major advantage of continuous manufacturing is the
possibility to enable real-time quality control of the products
manufactured.

Among the pharmaceutical manufacturing operations, hot
melt extrusion has been receiving significant attention due to its
straightforward integration in a continuous manufacturing envi-
ronment [7–9]. Furthermore, several innovative solid dosage
forms may be produced, including solid suspensions or solid
solutions for poorly soluble APIs [9–11]. In the latter case, the
API is molecularly dissolved in a polymer matrix. The matrix
can act as a thermal binder, drug stabilizer, drug solubilizer and/
or drug release controlling excipient. However, it is imperative
that the matrix suppresses recrystallization. Therefore, an ap-
propriate carrier compound is mainly selected based on the
drug-polymer interaction and miscibility, the polymer stability
and the function of the final dosage form [12]. Compared with
the crystalline form, the result is an enhanced dissolution rate
and improved drug solubility. Moreover, extruded solid solu-
tions have better thermodynamic stability than those prepared
by alternative processes such as spray drying, solvent evapora-
tion and other hotmeltmethods [13]. Other advantages ofHME
have extensively been discussed in the literature [12–14].

From a process technological point of view, the HME
process is a continuous manufacturing process that combines
multiple batch unit operations in one single process. Different
process steps, such as mixing, melting, homogenization, and
shaping, can be performed, offering the opportunities for auto-
mation of themanufacturing plant to limit material loss, increase
the throughput, decrease energy input, and yield a product with
high quality. Active areas of research include formulation de-
sign, process modeling, the design of screw assemblies and
extruder dies, mixing in the extruder, long-term operational
stability, controlled powder and liquid feeding, as well as the
shaping of pellets from a hot strand [8].

As mentioned above, the HME process can effectively be
integrated into a continuous manufacturing environment (see
Fig. 1). For example, a pre-processed matrix material and an
API are fed into the extruder. An example of a downstream
process is hot-strand cutting. Right after exiting the die, the
hot, still molten strand may be cut with a rapidly rotating

cutting knife into pellets of uniform size, shape and density.
This process configuration is advantageous since no subse-
quent spheronization and/or cooling steps and further melting
of the product are required, which reduces the equipment
costs and the energy required. Other process alternatives
exist, such as calendaring or cooling the strand, followed by
cutting of the cold strand. Subsequent downstream processes
may include a tablet press, followed by coating to produce
tablets or filling of the pellets into capsules [9,14,15].

SIPAT as a PAT Software Solution

Supervisory control of the process requires the interac-
tion of several analyzers, actuators and statistical models. In
response to the growing interest in such supervisory control
systems for pharmaceutical processes, Siemens developed a
PAT software solution, SIMATIC SIPAT. Its modularity al-
lows the user to monitor Critical Quality Attributes (CQAs)
or process parameters influencing the CQAs and to control
and optimize the manufacturing process.

SIPAT collects data in real-time from different monitoring
sources and performs an aggregation function to guarantee time
alignment. In addition, SIPAT brings in-line, at-line, on-line and
off-line data together and provides real-time predictions of the
product and process quality [16,17]. Observations, including
measurements, manipulated variables (MVs) and PAT data
(spectra, images, etc.) are available in real-time in SIPAT. How-
ever, SIPAT uses external calculation tools to transform the
large amount of process data into information which can further
be used to characterize the process. External calculation engines
applied in this study are MATLAB R2008b (Mathworks Inc.,
Natick, Massachussets, USA) and SIMCA-Q 12.0.1 (Umetrics
MKS Inc., Umeå, Sweden). The real-time prediction software
SIMCA-Q facilitates an easy integration of models developed in
SIMCA-P+ (Umetrics MKS Inc.), which can be used to build
MVDA models. MATLAB is a programming environment for
algorithm development, data analysis and numerical computa-
tion and thereby embedding MATLAB functions in the SIPAT
system extends the capability of SIPAT to perform complex
calculations (e.g., multivariate calculus). Moreover, SIPAToffers
common communication interfaces (e.g., OPC technology), mak-
ing it possible to use sensors from different manufacturers and
allows the developer to import PAT tools (e.g., spectrometer) by
providing customized communication interfaces.

In this work, SIPAT version 3.1.1 (Siemens Inc, Brussels,
Belgium) was applied to an HME process. Here we present the
network architecture of the current SIPATconfiguration, includ-
ing the HME process and the NIR spectrometer. Real-time
monitoring of CQAs is achieved by the integration of and inter-
action between the HME process (generic sensors, actuators),
the spectrometer, SIPAT, SIMCA-Q, and/or MATLAB. Fur-
thermore, the export of SIPAT data (observations, results of
calculations, etc.) as a standard format allows the usage of the
data in an external software.

MATERIALS AND METHODS

Materials

As a test system, a new carrier material calcium stearate
(CaSt; stearic acid 44% and palmitic acid 54%, EP, Werba-
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Chem GmbH, Vienna, Austria; volume mean particle size
16.62 μm) was used as a matrix carrier [14], and the API was
paracetamol (G.L. Pharma GmbH, Lannach, Austria; volume
mean particle size 139.2 μm).

Extrusion Process and Process Analytical Tools

An intermeshing co-rotating twin screw extruder
(ZSK 18, Coperion GmbH, Stuttgart, Germany) with a
screw diameter of 18 mm (D0/Di=1.55) was used. The
closely intermeshing co-rotating twin screw extruder has
two symmetrical screws with identical geometry that ro-
tate at the same speed. The screws have the same screw
diameter, which must be smaller than the barrel diameter
in order to establish a specified small clearance in the
order of 100 μm between the external wall and the screw
tip. Depending on the section of the extruder, particular
screw elements (conveying, kneading or right-handed ele-
ments) must be chosen in order to perform basic func-
tions. The barrels and the screws are of a modular design
and the screws must be assembled depending on the formula-
tion. The configuration of the co-rotating screws was selected to
fulfill the following basic function, which can be described by
several zones along the processing unit of the extruder. First, in
the intake zone (conveying elements) the material is moved
along the screws, compressing solids. Second, in the plastification
zone (kneading elements) softening and partial melting of the
material takes place before the soft material melt is mixed.
Finally, the melt is conveyed towards the die area, where con-
stant pressure forces the material through the die [8,14,18]. The
screw design is shown in Fig. 2.

A twin-screw gravimetric feeder (KT20,K-Tron,Niederlenz,
Switzerland) was used to control the feed rate of the powders. For
split-feeding experiments, a second feeder of the same type was
employed.

HME Process Parameters

The process parameters were (a) formulation (concentra-
tions), (b) extruder configuration (screw configuration, die

geometry, etc.), (c) barrel set-temperature profile, (d) throughput,
and (e) screw speed. The screw speed, feed rates and barrel
temperatures of barrel sections 2 to 10 can be manipulat-
ed. These parameters affect the process characteristics,
and thus, impact the quality of the final product. The follow-
ing input parameters were specified by the operator, i.e., the set
points of the process:

& Screw speed rss,
& Feed rate rf1 and rf2,
& Barrel temperatures rti with i=2,…,10 and
& 8–0 adapter temperature rta.

The 8–0 adapter (i.e., connection to the die) replaces the
last barrel of the extruder and represents the connection of the
extrusion process to the downstream process, the pelletizer.
The number “8” describes the geometry of the double-screw
channel, and “0” the geometry of the die. Figure 3 schemati-
cally illustrates the extruder, emphasizing the input (red) and
output (green) parameters and the location of the sensors,
which is significant for process analyzing.

The set points are listed in Table I. For the split feeding
experiment, both feeders were filled with a premix. Feeder 1
contained 80% CaSt and 20% paracetamol, and feeder 2
contained a premix with 50% CaSt and 50% paracetamol.
By adjusting the feed rates of the two feeders, different para-
cetamol concentrations were obtained. In all experiments, the
total throughput (feeder 1+2) was 0.6 kg/h.

Important parameters that should be measured (output
parameters) include torque, pressure profile, melt-tempera-
ture profile, residence time distribution, dispersion quality,
etc. Unfortunately, only a few parameters can be measured
directly. For example, it is not possible to measure the melt
temperature accurately as temperature probes cannot pene-
trate the melt channel. Thus, the temperatures measured (e.g.,
ytm below) are a mixture of melt and wall temperatures.
Similar considerations apply with respect to the chemical in-
formation (i.e., dispersion quality, mixing), which is not direct-
ly available. However, integration of a NIR spectrometer in
the extruder allows measurement of the concentration at the
die. Note, that the measurements are performed in a region

Fig. 1. Schematic illustration of a continuous plant, including the extruder and various
downstream processes
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close to the wall (in an area with low velocity) as the penetra-
tion depth of the NIR signal is in the range of only a few
hundred microns (depending on formulation). Nevertheless,
the information is highly useful for monitoring the overall
process.

Specifically we measured (output parameters):

1. Spectrum yS: The NIR spectrometer was used to obtain
information regarding the quality of the product. The data
of the spectra are multi-valued data.

2. Temperature sensors:

& Temperature of the barrels yti with i=1,2,…,10.
& Temperature of the 8–0 adapter yta.
& Material temperature ytm. One sensor measured the tem-
perature of the material in the die section (cf. Fig. 3).

3. Powder feed rate

& Feed rate yf1 and yf2. The powder flow at the feeder was
measured through a loss-in-weight system.

4. Pressure
& Material pressure ypm. The pressure of the material was
measured in the die section.

5. Machine parameters

& Screw speed yss in revolutions per minute.
& Torque ymd. The rpm and the torque of the main drive
were measured.

NIR Spectroscopy as an Integrated PAT Tool

In pharmaceutical manufacturing NIR spectroscopy has
long become an important tool for raw material testing, prod-
uct quality control and process monitoring. Compared with
other analytical techniques, NIR has several major advan-
tages: (a) no or minimal sample preparation is needed, (b)
predicting chemical and physical sample parameters from one
single spectrum after calibration is possible, (c) measurements
using fiber optic probes can be performed, and (d) a high
measurement rate can be sustained [3,19,20]. Nevertheless,
several challenges remain, including reliability, model robust-
ness, penetration depth, and ease of use.

In our work, a diode array-based near-infrared spectrom-
eter, SentroPAT FO (Sentronic GmbH, Dresden, Germany),
with a fiber-optic Dynisco NIR probe was used. The Dynisco
probe is a special probe for 1/2'' UNF thread, as used for
extruders. The spectrometer covers the wavelength range of
1,100 to 2,200 nm with a resolution of 2 nm. NIR spectra were
collected in transflectance mode. One hundred twenty spectra
were averaged and an integration time of 0.014 s per spectrum
was used. NIR absorption bands can be formed as combina-
tions from mid-IR fundamental frequencies or as NIR over-
tone absorption. The characteristics of NIR absorption bands
restrict the sensitivity in the classical spectroscopic sense as
they are typically broad, overlapping and 10 to 100 times
weaker than their corresponding fundamental mid-IR absorp-
tion bands. Thus, the development of analytical methods

Fig. 2. Screw configuration showing the arrangement of conveying and kneading elements

Fig. 3. Schematic illustration of the extruder and the input parameters, i.e., controlled
parameters (screw speed, barrel temperatures, and feed rate) are highlighted in red and
the output parameters (screw speed, feed rate, torque, barrel temperatures, material
pressure, material temperature, and the spectrum) are shown in green
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based on these properties of the NIR spectra requires data
filtering and multivariate data analysis techniques to relate
spectral information to sample properties [3,20,21].

Network Architecture

In order to monitor and control a process, uni- and mul-
tivariate sensors and actuators have to be embedded in SIPAT.
Thus, a certain network architecture based on the software
design of SIPAT and the hardware (i.e., the HME process in
this case) is required, as illustrated in Fig. 4. In the context of
SIPAT, one distinguishes between a base station, collector
stations, clients, and the central database. A collector station
is responsible for acquiring data for one certain sensor system.
This implies that every spectrometer, as well as univariate

sensors (e.g., temperatures, feed rates, etc.), represent a col-
lector station. A base station combines data from several
collector stations into a SIPAT method reflecting all data from
one specific unit operation, e.g., extrusion, blending, tableting,
etc. [16,17,22]. The central database is mandatory for the
SIPAT system. All the system configuration information, as well
as all historical and real-time data, are stored in this database.
The client PCs are essential for configuration purposes, but are
primarily used tomonitor the process in real-time and to analyze
historical data.

The focus of this study is on a single unit operation, i.e.,
the HME process, and consequently, only one base station
with two collector stations is required. Thus, the main compo-
nents are (a) a spectrometer PC as a collector station, (b) an
industrial PC as a collector station for all other extrusion data,

Table I. Summary of the Set Points for the Experiments

Chemical composition Process parameters

CaSt Paracetamol
Feeder 1
feed rate

Feeder 2
feed rate

Screw
speed

Barrel temperatures 8–0
adapter

1 2 3 4 5 6 7 8 9 10

– – rf1 rf2 rss – rt2 rt3 rt4 rt5 rt6 rt7 rt8 rt9 rt10 rta
(%) (%) (kg/h) (kg/h) (rpm) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)

80 20 0.6 0.0 150 20 90 110 110 100 100 100 100 100 100 125
70 30 0.4 0.2 150 20 90 110 110 100 100 100 100 100 100 125
60 40 0.2 0.4 150 20 90 110 110 100 100 100 100 100 100 125
50 50 0.0 0.6 150 20 90 110 110 100 100 100 100 100 100 125

Fig. 4. Network architecture of the hot melt extrusion process. The SIPAT components are
highlighted
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(c) a Coperion PC with the operator monitor (independent of
the SIPAT system), (d) a HME process, (e) a server PC,
including a central database as well as a base station, and (f)
an arbitrary number of clients. The communication between
SIPAT components is based on Ethernet.

Principles of SIPAT Components

The HME system has two collector stations: (a) the spec-
trometer was integrated into SIPAT via a SIPAT analyzer
driver. Sentronic provides a software layer that integrates the
SentroPAT FO spectrometer into SIPAT. The configuration of
the spectrometer (e.g., definition of the integration time, the
number of spectra that were averaged, etc.) has to be predefined
by a software from Sentronic and is loaded from the SIPAT
collector interface.

(b) The second collector for all other data is based on
OPC technology. OPC technology is used to distribute the
extrusion process data from different univariate sensors to
the OPC clients, especially to SIPAT acting as an OPC client.
Object Linking and Embedding (OLE) specifies a standard
for communicating real-time process data between the control
devices and the sensors from different manufacturers. The
OPC server uses the OPC Data Access (OPC DA) specifica-
tions that define communication protocols for real-time com-
munications between data acquisition devices and Human
Machine Interfaces (HMIs) or databases. As such, OPC DA
deals only with real-time data and not with historical data [22].
The OPC server and the SIPAT collector station are installed
on an Industrial PC. Furthermore, the Coperion PC and the
operator monitor are used to display SIMATIC WinCC. Win-
dows Control Center (WinCC) is a supervisory control and
data acquisition system as well as a HMI. As a consequence,
the operator can monitor the univariate data of the process by
WinCC and SIPAT.

SIPATaligns all measured input variables from the various
collector stations. While the spectrometer delivered the mea-
surements within 2 to 3 s, the extruder provided the data faster.
The sampling rate should be a trade-off between (a) noise
reduction, (b) relevance to the dynamics, and (c) restrictions
from a computational performance perspective. Consequently,
the sampling period was chosen to be 5 s.

SIPAT as Control Unit

In addition to monitoring the process, SIPAT may be
used to control the process, both in a process-control and
quality-control context. Therefore, SIPAT can adjust set
points, as illustrated in Fig. 5. SIPAT is integrated into the
system based on OPC technology. This configuration enables
two (mutually exclusive) operating modes: (a) the user work-
ing directly on the HME process monitors via WinCC the
process parameters and may manipulate set points and (b)
the SIPAT user (remotely) monitors and possibly manipulates
the process from any SIPAT Client PC. Only the latter mode
allows the user to access spectral information and to detect
deviations, leading to control action, i.e., adjusting the set
points. Furthermore, this configuration opens up the opportu-
nity to easily integrate an automatic process control strategy,
i.e., a closed-loop controller, such as a feedback or model
predictive controller (MPC) in SIPAT. However, the control

of the product quality is currently carried out manually using
the WinCC or the SIPAT interface.

System Functionalities and Data Flow Diagrams

The HME process is a multi-input multi-output (MIMO)
system. Thus, the extrusion process can be viewed as a “13
input x 19 output” process. The input parameters are the
screw speed, both feed rates, 9 barrel temperatures and the
temperature of the 8–0 adapter. The measured material tem-
perature, the material pressure, the torque, both feed rates, 10
barrel temperatures, the temperature of the 8–0 adapter and
the projection of the measured spectrum onto two variables
are counted as output parameters. However, the spectrum is a
high-dimensional set of parameters and thus, the number of
output parameters depends on the processing method (e.g.,
PCA, PLS regression, etc.) applied to the spectra. In theory,
also three or more principal components could be used. Data
analysis can be applied to identify and eliminate the parame-
ters with little or no correlation to the product quality charac-
teristics of interest [23]. Therefore, the following procedure is
a straightforward way to gather time-aligned data (set points
and output parameters) which can directly be used to analyze
and identify critical process parameters.

Figure 6 shows the basic data flow diagram including
MATLAB, SIPAT, the process, and SIMCA-Q. In general,
the process followed a certain profile of the reference feed
rate defined in MATLAB. Moreover, the spectrum acquired
with the NIR spectrometer was processed by SIMCA-Q. The
entire data were recorded and stored in the central database.

Figure 7 depicts a more detailed data flow diagram which
illustrates the interactions between SIPAT, the NIR spectrom-
eter, the Industrial PC, SIMCA-Q, the client PC(s), and the
process itself. The spectrometer PC delivered multi-value mea-
surements (spectra) and the Industrial PC provided SIPAT with
scalar measurements (e.g., screw speed, barrel temperatures, and
feed rate) via OPC. An arbitrary PC was configured as a
MATLABSIPATPC to executeMATLAB scripts. A predefined
input sequence (e.g., reference feed rate) was generated off-line
in MATLAB and could easily be adapted for another input
parameter or expanded for multiple input parameters. After
acquiring a new set point of the input feed rate, SIPATdistributed
the scalar via OPC technology to the extruder. The extruder
forwarded the value to the feeder that modified the feed rate.
In order to investigate the influence of input parameters on the
product quality, the observed spectrum had to be interpreted, i.e.,
in real time using SIMCA-Q by projecting the data onto a

Fig. 5. The feedback connection via SIPAT allows the SIPAT user to
manipulate input parameters
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reduced dimensional space. After the experiment, the observed
data were analyzed off-line, i.e., in MATLAB where the input
sequences and data from SIMCA-Qwere time-aligned available.

Process Analysis in a Reduced Dimensional Space

Using MSPC, an operator can monitor the performance
of an entire plant looking at only a few multivariate control
charts [24]. For example, data representation in a much lower-
dimensional space was utilized in other processes [25,26].
Here, the spectrometer delivered a spectrum in the wave
length range of 1,100 to 2,200 nm and with a resolution
of nm. Thus, the output data had 551 elements (m=551) for
N data points, the data matrix X can be written as

X ¼
yTS1
yTSz
⋮
yTSN

2
664

3
775with ySi ¼

yI1100
yI1102
⋮
yI2200

2
664

3
775 i ¼ 1;…;N ð2:1Þ

with the measured intensity yI100 at a wave length of 1,100 nm,
for example. Apparently, one spectrum contains highly corre-
lated variables, and therefore a specific number of independent

variables should deliver the significant information. Principal
component analysis (PCA) applied to the observed data may
be used to extract the essential information. This method is
based on the calculation of eigenvectors of the covariance ma-
trix of the observed spectra (cf. with data matrix X). For ade-
quate modeling of the covariance structure of X the number of
principal components should be appropriate. In the following a
principal components are sufficient to represent the spectra in a
reduced dimensional space without losing essential information.
Consequently, the data matrix can be represented as

X ¼ TPT þ E ð2:2Þ

with the score matrix T, the loading matrix P and the random
error E. The score matrix

T ¼ t1 t2 … ta½ � ð2:3Þ

with the set of vectors

ti ¼
t1i
t2i
⋮
tNi

2
664

3
775for i ¼ 1;…; a ð2:4Þ

generated by an orthogonal subspace, which is usually of a
much smaller dimension than the data matrix X (a<<m). The
loading matrix

P ¼ P1 P2 … Pa½ � ð2:5Þ

with

pi ¼
p1i
p2i
⋮
pmi

2
664

3
775for i ¼ 1;…; a ð2:6Þ

provides information regarding the patterns in the scores and
allows interpretation of groups of variables related to specific
features in the spectrum. The scores may be used to extract
information about the relationships between objects (e.g.,
trends, groupings, outliers) and how the process moved in
the subspace. In this study, we focused on the interpretation
of the score plots of the principal components (e.g., scores t1
versus t2) [23,27–29].

RESULTS AND DISCUSSION

The input feed rates rf1 (feeder 1) and rf2 (feeder 2) were
chosen as the manipulated variables that directly influence the
CQA, i.e., the API concentration of the extrudate. High fre-
quency perturbations of the feed rates are dampened by the
back-mixing ability of the extruder, whereas low frequency
disturbances influence the final product quality. Thus, phar-
maceutical powder-feeding dynamics are a very important
factor for content uniformity of the melt.

Fig. 6. Manipulation of the reference feed rate and observation of the
spectrum that was analyzed in real-time using SIMCA-Q. The input
and output data were analyzed off-line, i.e., in MATLAB, where the
input sequences and the data from SIMCA-Q were time-aligned
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Monitoring of Spectra

Depending on the premix in the feeders, a specified API
concentration of the extrudate at the die was set. Figure 8 illus-
trates the NIR spectra collected while varying the feed rates.
The colored spectra depict stable process conditions; whereas,
the gray highlighted spectra denote transitions caused by ma-
nipulating the reference feed rates. SIPAT can visualize and
process the spectra in real-time. In order to make a precise
and explicit statement about the API concentration of the
extrudate, it is mandatory to process the spectra. As discussed
in a previous section, the spectral data are processed and
analyzed applying PCA.

Process Monitoring Based on PCA using SIPAT

Monitoring the process in the reduced PC space is a
straightforward way of implementing real-time process

analysis. The observations and processed data (using
SIMCA-Q) were visualized in SIPAT.

An appropriate pre-processing concept (e.g., standard
normal variate, detrending, Savitzky–Golay filter, etc.) can
eliminate the influence of physical parameters (i.e., opacity
and melt temperature) on the concentration measurement [3].
Variations of the temperature and the opacity of the melt lead
to multiplicative effects and baseline shifts in the observed
spectra. However, this was not done in the current study.
Thus, physical information is preserved and opacity and the
temperature of the melt can be extracted from the spectra.
This is even more important in continuous manufacturing, as
the extruder is connected to the pelletizer. The pelletizer re-
quires an intermediate product with consistent physical pa-
rameters (e.g., material temperature) in order to process the
material properly. Since small variations of the melt tempera-
ture might influence the size and shape of the final product
(i.e., the pellets), it is important to detect deviations from the

Fig. 7. The hardware components (spectrometer, extruder, and feeder), SIPAT, Umetrics, and MATLAB interact to distribute predefined
samples and collect measurements time-aligned. After the experiment, the entire data (input data, measurements and calculated data) is
accessible time-aligned
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stable state. In summary, the unprocessed spectra were used
for further processing and analysis of the data.

Figure 9(a) illustrates the score plot of the principal com-
ponents t1 and t2. Adjusting the feed rates of the feeders
resulted in different API concentrations in the extrudate
which show up in the score plot as clusters of observations.
Applying PCA to the data could thus be seen as classification
of the main events affecting the process. The four clusters
represent 20% (red), 30% (blue), 40% (magenta), and 50%
(cyan) API content in the extrudate in the die section (gray
dots correspond to observations made during transitions be-
tween stable process conditions).

As opacity of the melt is directly related to the API con-
centration, and since opacity saturates at approximately 40%
API, higher API concentrations (>40%) cannot be distin-
guished with only one PC obtained from unprocessed spectra
and a second principal component is required. The necessity of
the second principal component for the separation of spectra
associated with higher API concentrations can also be seen in
Fig. 9(a), i.e., t1 scores for 40% and 50% are very close.

Two principal components additionally allow a better
specification of a stable state with respect to the API concen-
tration and process parameters such as the melt temperature.
A closer inspection of the trajectory between stable states in
the subspace allows real-time monitoring of the process states.
This can be carried out by different graphical methods, such as
a score plot or the illustration of the scores of each principal
component over time. The former method is shown in
Fig. 9(b), where the trajectory from state 1 (20% API concen-
tration) to state 2 (30% API concentration) is shown. The
advantage of this illustration is that the operator can directly
detect variations of both principal components. However, the
disadvantage is that data points cannot be related to the
process time. This drawback can be overcome by displaying
the scores of each principal component in dependence on the
process time, as depicted in Fig. 9(b).

Figure 10 illustrates the score values t1 and the reference
feed rate of feeder 1 rf1 as a function of time. While the first
principal component scores change because of the API con-
centration (from high to low, in steps of 10%) the transport
delay (residence time) becomes also evident (see Fig. 10a, b).
The time to reach steady-state (settling time) can also be
determined by comparing the reference feed rate and score
values of the first principal component. The delay time for this
particular process configuration (formulation, screw configu-
ration, die geometry, etc.) was approximately 55 s, and the
settling time of a step change was approximately 100 s. These
parameters were easily identified in real-time via SIPAT based
on Fig. 10.

Fig. 9. a Different API concentrations (20%, 30%, 40%, and 50%) result in the clustering of samples in the score plot (t1
versus t2). b The trajectory from the stable state 1 (20% API concentration) to the stable state 2 (30% API concentration)
was monitored in real-time via SIPAT. The mean settling time from one process condition to the other stable state was
approximately 100 s

Fig. 8. NIR spectra collected while changing the reference feed rates
of feeder 1 and 2. The total throughput was constant at 0.6 kg/h
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CONCLUSION

Continuous manufacturing requires monitoring (and
eventually control) of critical process parameters for each unit
operation. However, in most cases numerous process variables
are recorded, and in case of spectral process analyzers, hun-
dreds of variables per measurement have to be considered.
Thus, monitoring the process in a reduced dimensional space
is beneficial. This can be achieved by applying PCA to the
observed spectra.

In this study the monitoring and supervisory control of a
continuous hot melt extrusion (HME) process with generic
sensors and a near-infrared (NIR) spectrometer in real-time is
described, using SIPAT (Siemens platform to collect, display,
and extract process information) and additional components.
SIPAT aligns spectra from the product material in the die
section with univariate measurements (screw speed, barrel
temperatures, material pressure, etc.). Based on this a multi-
variate supervisory quality control strategy was developed for
the process.

However, the MVDA models that are developed in this
process can be applied to only one formulation. In a typical
campaign-driven manufacturing environment (which even
continuous manufacturing of the future will be) formulations
and/or products may change weekly or monthly. Automatic
model development can be performed via the procedure de-
scribed (Fig. 6). Additionally, real-time analysis of acquired
spectra or PAT data can be used as a basis for multivariate
statistical process control (MSPC) strategies and for optimiz-
ing the process to a desired product quality. The concept of
model predictive control (MPC) can be applied to control the
manufacturing process, meaning that control can be established
based on the current measurements, a process model and the
already existing feedback connection via platforms such as
SIPAT.

Further work will be directed at expanding the experience
and the range of the process applications to other continuous
primary and secondary pharmaceutical unit operations and at
other more challenging PATmonitoring tools, feed-forward con-
trol strategies, andmultivariate supervisory control visualization.

Fig. 10. The reference feed rate of feeder 1 a and the score values of the PC 1 b can be used
to obtain the residence time in real-time in SIPAT
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